Indian Statistical Institute, Bangalore Centre

M.Math I Year, First Semester Semestral Examination - 2013-2014 Analysis of Several Variables November 15, 2013 Instructor: T.S.S.R.K. Rao

Time: 3 Hours

8*8=64Maximum Score = 60

- 1. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by $f(x, y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2}$, for $(x, y) \neq (0, 0)$ and f(0, 0) = 0. Show that f is differentiable at (0, 0) but the partial derivatives are not bounded in any neighbourhood of (0, 0).
- 2. Find and classify the extreme values (if any) of $f(x, y) = x^2 + y^2 + x + y + xy$. State all the results needed for your conclusions.
- 3. Show that $\{(x_1, \sin^2 x_1, x_2, -x_3) : x_i \in [0, 2\pi], 1 \le i \le 3\}$ is a set of content zero in \mathbb{R}^4 .
- 4. Let $D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 3x + 2\}$. Show that Area of D = 7/2. State the theorem you need to arrive at this conclusion.
- 5. Let $\Phi : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be an affine transformation. Show that there exists a L > 0 such that $|| \Phi(x, y, z) - \Phi(x^1, y^1, z^1)|| \le L || (x, y, z) - (x^1, y^1, z^1)||$ for all $(x, y, z), (x^1, y^1, z^1) \in \mathbb{R}^3$.
- 6. Define $T : [0,1] \times [0,2\pi] \to \mathbb{R}^2$ by $T(\gamma,\theta) = (\gamma \cos \theta, \gamma \sin \theta)$. Show that the range of T is the closed unit disc D and that T is one one in the interior of the rectangle. Let f be a continuous function on D with compact support contained in $T((0,1) \times (0,2\pi))$. Derive the formula $\int_{D} f(x,y) dx dy = \int_{0}^{1} \int_{0}^{2\pi} f(T(\gamma,\theta)) \gamma d\theta d\gamma$.
- 7. Define a differentiable form in \mathbb{R}^3 , also define addition and multification of forms. Derive the distributive law $(\omega_1 + \omega_2) \wedge \lambda = (\omega_1 \wedge \lambda) + (\omega_2 \wedge \lambda)$, while stating all the conditions needed for the validity of this formula.
- 8. Let $k \ge 2$ and $\sigma = [p_0, p_1, \cdots p_k]$ be a positively oriented affine k-simplex. Use the definition of the boundary to derive that $\partial^2 \sigma = \partial(\partial \sigma) = 0$.